Всего: 3 1–3
Добавить в вариант
В основании прямой четырехугольной призмы ABCDA1B1C1D1 лежит трапеция ABCD, у которой ∠C = 90°, BC и AD — основания, BC = CC1. Плоскость, которая проходит через ребро DC и вершину A1 призмы, образует угол
с плоскостью основания (см. рис.) и отсекает часть NC1CA1D1D. Если объем призмы равен 48, то объем оставшейся части равен … .
Найдите объем прямой призмы ABCDA1B1C1D1, в основании которой лежит параллелограмм ABCD, если длины ребер AB и AA1 равны 4 и 1 соответственно, а расстояние точки A1 до прямой CD равно 5.
Дан куб ABCDA1B1C1D1 с длиной ребра, равной 118. На ребрах ВС и ВВ1 взяты соответственно точки М и N так, что и
Через точки M, N, A1 проведена плоскость. Найдите расстояние d от точки С до этой плоскости. В ответ запишите значение выражения d2.